Mechanism of Alkylation during Sitosterol Biosynthesis in *Larix decidua*

By PATRICIA J. RANDALL, H. H. REES, and T. W. GOODWIN*

(Department of Biochemistry, The University, P.O. Box 147, *Liverpool* **L69 3BX)**

Summary Incorporation of $[2^{-14}C-(4R)-4^{-3}H]$ mevalonic acid into sitosterol in *Larix decidua* demonstrates that during alkylation, the C-24 hydrogen of the Δ^{24} precursor is eliminated.

THE alkyl side chain at C-24 in phytosterols arises by transmethylation from S-adenosy1methionine.l **A** suggested2 mechanism for this process involves hydrogen migration from C-24 to C-25 and formation of 24-methylene (11) and 24-ethylidene (V) compounds as precursors of C-24 methyl (111) and C-24 ethyl (VI) sterols, respectively (Scheme). In support of this Scheme, certain C-24 methyl and ethyl sterols biosynthesised by lower organisms in the presence of $(CD₃)$ -methionine contain only two and four deuterium atoms, respectively.³ In contrast to this, C_{28} and C_{29} alkyl-saturated sterols biosynthesised in other lower organisms retained three and five deuterium atoms, respectively4 **s5** thus excluding the involvement of 24 methylene (11) and 24-ethylidene (V) intermediates in their biosynthesis. This has been explained⁵ by invoking a $\Delta^{24(25)}$ intermediate, which is in agreement with the observation that the hydrogen at C-24 in the Δ^{24} sterol precursor is eliminated during stigmasterol biosynthesis in *Nicotina tabacuin* and *Dioscorea tokoro.6*

SCHEME. HA *is derived from the 4-pro-R hydrogen of mevalonic acid.*

sterols have not been conclusively shown to be intermediates

in biosynthesis of any C-24 methyl- and ethyl- sterols in higher plants. Similarly, the hydrogen at C-24 in the precursor Δ^{24} sterol has only been conclusively shown to be retained at C-25 during ergosterol biosynthesis in yeast,' but never during biosynthesis of any C-24 saturated alkylsterol in higher plant tissue. In order to establish the fate of the C-24 hydrogen of the Δ^{24} -sterol precursor in phytosterol biosynthesis in higher plants we report the incorporation of **[2-14C-(4R)-4-3H1]mevalonic** acid into sitosterol (X) and 28-isofucosterol (XI) in *Larix decidua* leaves.

Young leaves of *Larix decidua* were chosen since sito-
sterol is the principal sterol⁸ and 28-isofucosterol has also SHEP TO USE THE PRINCIPAL STEP 3 AND THE PRINCIPAL STEROL IS the principal sterol⁸ and 28-isofucosterol has also been radiochemically detected⁹ in this tissue. We have now further characterized 28-isofucosterol as a m now further characterized 28-isofucosterol as a minor component of *Larix decidua,* from a partly purified sterol fraction by g.1.c. and g.1.c.-m.s. **(3%** OV-17 column).

Chopped young leaves (2 *g)* of *Larix decidua* were incubated with $[2^{-14}C-(4R)-4^3H_1]$ mevalonate $(10 \,\mu\text{Ci}^{14}C)$ overnight at 25' and the non-saponifiable lipids isolated. The sterols and squalene were obtained by t.l.c., and the squalene further purified after addition of carrier material, *via* the thiourea adduct (twice) and hexahydrochloride. Compounds (X) and (XI) were separated from the sterol fraction, after addition of carrier (XI) by t.1.c. on **AgNO,** impregnated silica gel. G.1.c. **(3%** OV 17 column) of the respective zones with trapping of samples at **1** min intervals for radioassay, indicated that all the radioactivity within each zone was associated with sitosterol and 28-isofucosterol, respectively. After dilution with carrier material, sitosterol and 28-isofucosterol were recrystallised to constant specific radioactivity. Since the ${}^{3}H$: ${}^{14}C$ atomic ratio (Table) of the **(a)** recrystallised sitosterol (X) was between **2** : 5 and **3** : *5,* portions of (X) were further processed by (i) formation of the dibromide derivative and regeneration **of** the free sterol in However, 24-methylene (II) and 24-ethylidene (V) ether with zinc-acetic acid and recrystallization¹⁰ and(ii) treatment with Jones reagent yielding **24R-ethylcholest-4-en-3,6-** dione.11 The latter was further transformed after dilution with carrier material by treatment with zinc and acetic acid into $24R$ -ethylcholestane-3,6-dione,¹² m.p. 186-188°; m/e 428.

The **3H** : 14C ratios for the sitosterol purified *via* dibromide, the **24R-ethyl-cholest-4-ene-3,6-dione** and the 24R-ethylcholestane-3,6-dione are in good agreement **(2:** 5), and indicate the presence of only two tritium atoms in the biosynthesised sitosterol. By analogy with cholesterol biosynthesis in animals,¹³ the compound (X) should be labelled

formation in *Nicotiana* and *Dioscorea* tissue cultures, and support the operation of route (a) (Scheme) involving a $\Delta^{24(25)}$ intermediate (VII) but not routes (b), (c), (d), or (e), during sitosterol biosynthesis. **A 3H:** 14C ratio of **3:** *5* for 28-isofucosterol $(XI) \equiv (V)$ is in agreement with the established14 operation of route (c) in its biosynthesis. The present results indicate that 28-isofucosterol is not on the major pathway to (X) in *Larix decidua,* at least not without isomerization to a Δ^{24} structure. In view of this, other earlier reports¹⁵ of the incorporation of $[2^{-14}C-(4R)$ -

TABLE. *lncorporation of* $[2^{-14}C-(4R)-4^{-8}H_1]$ *mevalonate into sitosterol and 28-isofucosterol in Larix decidua*

Compound				Specific radioactivity $(in d.p.m. 14C mg-1)$	$3H \cdot 14C$ radioactivity ratio ^a	3H:14C atomic ratio (based on squalene)
Squalene \cdot \cdot $\ddot{}$	\cdot \cdot	\cdot .	\cdot \cdot		7.54	
Sitosterol (X) (recrystallized)	$\ddot{}$	$\ddot{}$	$\ddot{}$	228	3.67	2.43:5
Sitosterol (X) (purified <i>via</i> dibromide)		\bullet	$\ddot{}$	350	3.36	2.23:5
$24R$ -Ethylcholest-4-ene-3.6-dione		$\ddot{}$	\bullet	340	$3 - 33$	2.21:5
$24R$ -Ethylcholestane-3,6-dioneb	$\ddot{}$	$\ddot{}$	\cdot .	174	$3-13$	2.08:5
28-Isofucosterol (XI) (recrystallized)		$\ddot{}$	\cdot .	253	4.53	3.00:5

* The specific radioactivities and radioactivity ratios quoted are the mean of three sequential crystallisations in each case. **b** Diluted with carrier material before recrystallization.

indicates that a radioactive impurity, with a higher 3H : ¹⁴C gation.
ratio (possibly the corresponding Δ^7 sterol), had been We thank the S.R.C. for a Studentship to P.J.R. and ratio (possibly the corresponding Δ^7 sterol), had been carried through the recrystallization. Dr. J. G. Lloyd-Jones for helpful discussions.

The present results for sitosterol (X) are in agreement with those of Tomita and his co-workers⁶ for stigmasterol *(Received, 5th October 1972; Com. 1700.)*

as shown (XII). The higher ³H: ¹⁴C ratio observed for the 4⁻³H₁]mevalonic acid into higher plant sterols, which gave recrystallized sitosterol which had not been purified further inconclusive results will require f inconclusive results will require further careful reinvesti-

- E. Lederer, *Quart. Rev.,* **1969, 23, 453.**
- *M. Castle, G. Blondin, and W. R. Nes, *J. Amer. Chem. Soc.,* **1963, 85, 3306.**

⁸ (a) G. Jaureguiberry, J. H. Law, J. A. McCloskey, and E. Lederer, *Biochemistry*, 1965, 4, 347; (b) A. R. H. Smith, L. J. Goad, T. W. Goodwin, and E. Lederer, *Biochem.* J., 1967, 104, 56c; (c) J. Varenne, J. Polonsky, *Biochimie,* **1971,** 53, **261.**

(a) M. Lenfant, R. Elloiz, B. C. Das, E. Zissmann, and E. Lederer, *European J. Biochem.,* **1969, 7, 169; (b) Y.** Tomita, **A.** Uomori, and E. Sakurai, *Phytochemistry*, **1971, 10**, 573.

⁵ Y. Tomita, A. Uomori, and H. Minato, *Phytochemistry*, **1970, 9**, 555.

-
-
- ⁶ Y. Tomita and A. Uomori, *Chem. Comm.*, 1970, p. 1416.
⁷ M. Akhtar, P. F. Hunt, and M. A. Parvez, *Biochem. J.*, 1967, 103, 616.
-
- **E.** J. Goad and T. W. Goodwin, *European J. Biochem.*, 1967, 1, 357.
 P. L. J. Goad, G. F. Gibbons, L. M. Bolger, H. H. Rees, and T. W. Goodwin, *Biochem. J.***, 1969, 114, 885.**
-
-
-

⁹ L. J. Goad, G. F. Gibbons, L. M. Bolger, H. H. Rees, and T. W. Goodwin, *Biochem. J.*, 1969, 114, 885.
¹⁰ I. D. Frantz jun., A. G. Davidson, E. Dulit, and M. L. Mobberley, *J. Biol. Chem.*, 1959, 234, 2290.
¹¹ P. C

Soc., 1965, 87, 3224; (b) L. J. Mulheirn and E. Caspi, *J. Biol. Chem.*, 1971, 246, 3948.
¹⁴ K. H. Raab, N. J. De Souza, and W. R. Nes, *Biochim. Biophys. Acta*, 1968, 152, 742; (b) L. J. Goad and T. W. Goodwin, *Europea*

l5 (a) H. H. Rees, E. I. Mercer, and T. W. Goodwin, *Biochem. J.,* **1966, 99, 726;** (b) R. **K.** Sharma, *Phytochemistry,* **1970, 9, 565.**